Regional CECs and Pollutant EMCs in Stormwater Assessment

Scientific Studies Program

Fiscal Year 2026-2027

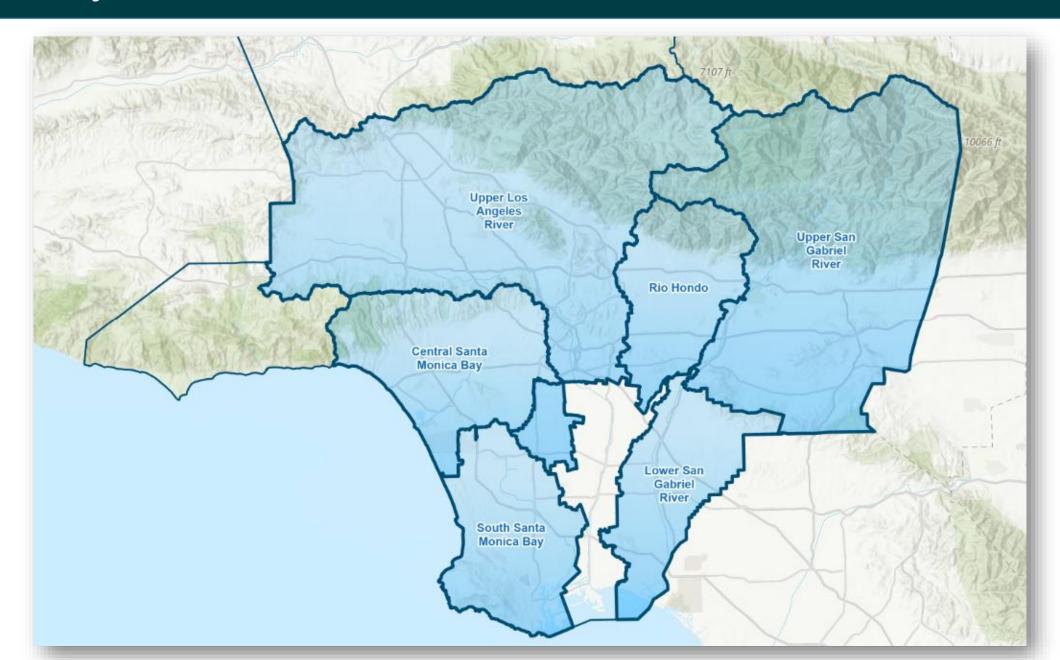
Watershed Area(s): Upper LA River, Central Santa Monica, South Santa Monica,

Rio Hondo, Upper San Gabriel, Lower San Gabriel

Project Lead: UCLA

Presenter Names: Sanjay Mohanty, PhD (UCLA) | Dylan Ahearn, PhD (Herrera)

Study Overview


Regional stormwater study linking land use to emerging contaminants such as PFAS, microplastics, and 6PPDQ to help guide future BMPs and planning.

- This study generates actionable, science-based data on CECs in stormwater runoff within Los Angeles County, which:
 - Advances science-based decision making within the SCWP
 - Improves watershed planning, and selection and placement of BMPs and strategies

Study Location

Study Team – Lead

UCLA

Sanjay Mohanty, PhD Project Principal

- Experts on the fate and transport of CECs, including microplastics and PFAS, in stormwater.
- Leading several scientific studies funded by federal and state agencies on designing climate-resilient BMPs to improve stormwater quality.
- Leading soil monitoring effort for metals and CECs post 2025 Los Angeles Wildfires.

Study Team - Collaborators

- National leader in WQ monitoring, BMP performance assessment, and CEC pollutant source characterization.
- Data science and geospatial analyses focused on environmental, public health, and social equity.

Dylan Ahearn, PhD
Principal Technical Advisor

4 AtkinsRéalis

- Global leader in infrastructure and environmental solutions with local expertise.
- Science-based monitoring program design and BMP implementation to address MS4-specific issues

Jian Peng, PhD
Implementation Lead

Study Details – Problem Statement

- 1. A new generation of Contaminants of Emerging Concern (CECs) including PFAS, microplastics, and 6PPDQ are now ubiquitous in stormwater.
- 2. Recent (and future) wildfires are expected to increase the concentration of PFAS and microplastics in stormwater.
- 3. Establishing a <u>linkage between land use and stormwater CECs</u> is crucial for guiding the selection and placement of structural and non-structural BMPs and the development of broader watershed strategies.

Study Details – Objectives & Outcomes

Objective:

Generate a robust, regionally representative data set on the occurrence, concentrations, and land use correlations of CECs in Los Angeles County stormwater.

Outcomes:

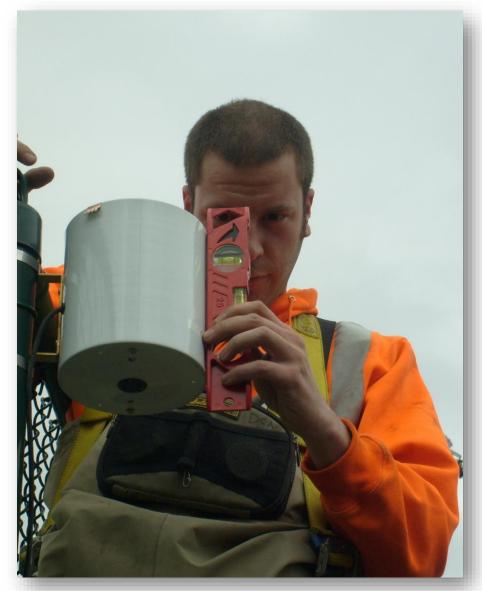
Guidance for BMP Implementation

- 1. Targeted BMP Siting Based on Land Use and Traffic Patterns
- 2. Pollutant-Specific BMP Selection

Development of Tools and Applications

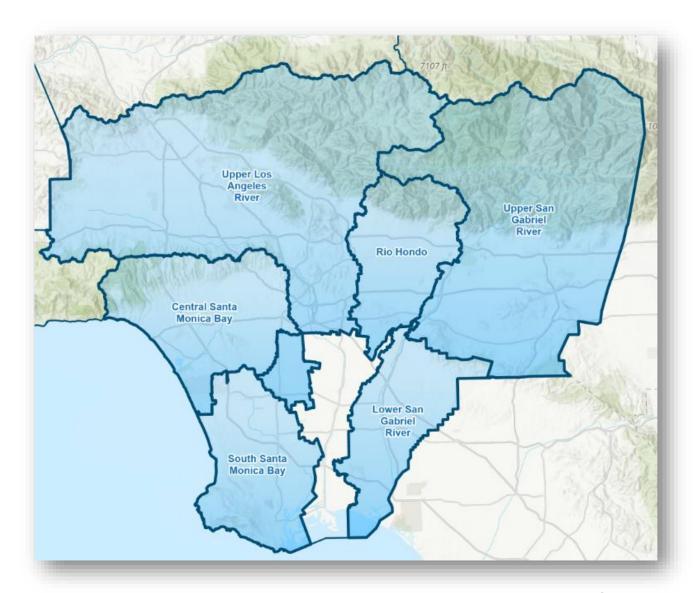
- 1. Interactive Data Dashboard
- 2. Digital Archive for Future CEC Analysis

BMPs Post-wildfires


1. Did wildfires increase CECs, and to what extent?

Study Details – Methodology

- **Task 1** Planning and Site Selection
- Task 2 Literature Review and Method Development
- Task 3 Equipment Installation and Site Preparation
- Task 4 Sample Collection
- Task 5 Data Management and Quality Assurance
- Task 6 Data Analysis and Interpretation
- Task 7 Reporting and Communication
- Task 8 Project Management



Study Details – Collaboration

Regional Effort

- CSMB, LSGR, Rio Hondo, SSMB, ULAR, USGR
- Diverse densities, land uses, climates, watersheds, and populations
- Efficiency in sharing knowledge, priorities, and costs among watersheds

Study Details – Collaboration (cont.)

Foundational and Complementary Efforts

- Passive-active modular stormwater biofilter designs to enhance PFAS removal in variable flow conditions (UCLA -DoD)
- 2. Accumulation, transport, and treatment of microplastics impacted with PFAS in stormwater best management practices (UCLA DoD)
- Design factors affecting microplastic retention, removal, and generation in structural best management practices (UCLA - COPC)
- 4. Soil amendment guidance for infiltration and stormwater treatment (UCLA, Caltrans)



Study Details - Collaboration (cont.)

Foundational and Complementary Efforts

- 5. Spatial and Temporal Trends in Chemical Contamination and Toxicity Relative to Land Use in California Watersheds (SPoT Monitoring Program)
- 6. Multimedia investigations of microplastic concentrations in the Los Angeles and San Gabriel Rivers (SCCWRP)
- 7. Southern CA Stormwater Monitoring Coalition (SMC) updating conventional event mean concentrations (EMCs), and specifically highlighted the need for CEC data.
- 8. Characterization of Stormwater Transport of Contaminants of Emerging Concern (UW Tacoma et al. 2025)

Study Details – Collaboration

Cost & Schedule

Task	Cost	Start Date	Completion Date
Task 1 – Planning and Site Selection	\$237,294	April 2027	April 2028
Task 2 – Literature Review and Method Development	\$161,765	April 2027	April 2028
Task 3 – Equipment Installation and Site Preparation	\$695,861	April 2028	October 2028
Task 4 – Sample Collection	\$698,509	October 2028	October 2031
Task 5 – Data Management and Quality Assurance	\$138,390	October 2028	October 2031
Task 6 – Data Analysis and Interpretation	\$118,791	April 2029	October 2031
Task 7 – Reporting and Communication	\$247,322	October 2028	February 2032
Task 8 – Project Management	\$169,959	April 2027	February 2032

Funding Request

WASC	Year 1	Year 2	Year 3	Year 4	Year 5	Total
CSMB	\$61,926	\$134,288	\$34,780	\$43,274	\$78,641	\$352,908
LSGR	\$59,761	\$129,593	\$33,564	\$41,760	\$75,891	\$340,569
RH	\$41,573	\$90,151	\$23,349	\$29,051	\$52,794	\$236,917
SSMB	\$63,225	\$137,105	\$35,510	\$44,181	\$80,290	\$360,312
ULAR	\$139,009	\$301,444	\$78,072	\$97,138	\$176,529	\$792,193
USGR	\$67,556	\$146,496	\$37,942	\$47,207	\$85,790	\$384,991
TOTAL	\$433,051	\$939,077	\$243,216	\$302,612	\$549,934	\$2,467,890

Summary of Benefits

- Water Quality Providing a scientific foundation to inform and guide targeted investments based on CEC hotspots
- 2. <u>Water Supply Resilience</u> Enabling agencies to better assess treatment needs and risks with infiltration
- 3. <u>Community Investment and Planning</u> Informing water management decisions to equitably safeguard all communities
- 4. Enhancing Public Education and Outreach -
 - Products/data dashboard will build public awareness and support for SCWP initiatives
 - Integrating results into UCLA class curriculum and training

