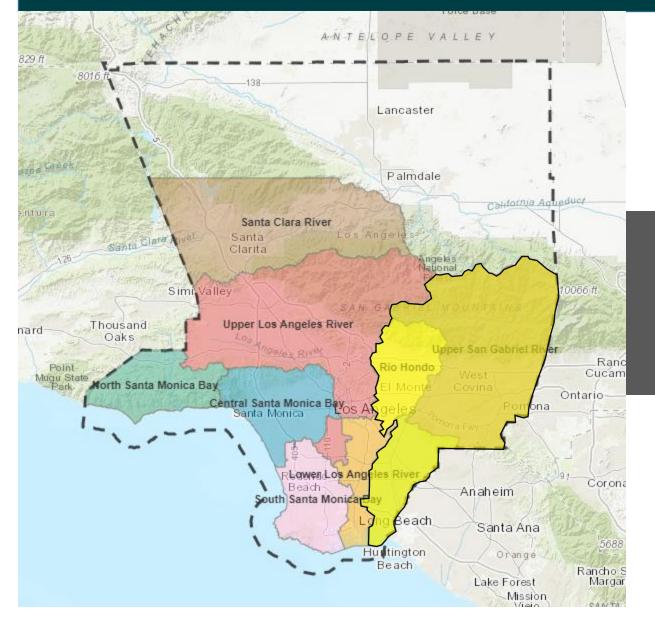
Next Gen Bioretention

Towards Living & Adaptive Stormwater Systems for a Resilient Los Angeles County


> Scientific Studies Program Fiscal Year 2025-2026 Rio Hondo Watershed TreePeople Dustin Herrmann (Craig Doberstein, Igor Bronz)

Study Overview

A study assessing existing systems and delivering modeled nextgeneration designs for resilient, multi-benefit bioretention systems.

Bioretention systems are one of **most powerful ways to capture**, **treat and convert** stormwater into ecological value. This value is dependent on maintaining the system's proper and intended longterm function, which this study will **evaluate and optimize for LA.** An optimized design framework that adapts to future ecological inputs and demands will be worth millions in ecological and resilience value.

Proposed Study Areas:

- Rio Hondo Watershed
- Upper San Gabriel River Watershed
- Lower San Gabriel River Watershed

Uniquely suited to bioretention:

- Intermediate population density
- Regionally moderate climate
- Critical importance of San Gabriel river to regional watershed health

Note: We are proposing parallel studies within the Upper & Lower San Gabriel River watersheds. While each study is individually valuable, performing this study in multiple watersheds will further strengthen the recommendations for each watershed.

50-year history in shaping urban greening in the region

<u>Role</u>: Lead entity, study coordination, leadership

Dustin Herrmann, PhD (*Principal Scientist*) – Ecologist with 16 years experience performing research and project management. Served as EPA research scientist investigating urban soil hydrology and subsurface modification techniques

Igor Bronz (*Research Senior Coordinator*) – Environmental engineer and hydrologist with 8 years' experience in nature-based design and environmental remediation HERRERA Science + Planning + Design

20+ years as leaders in Gl design, monitoring, & training <u>Role</u>: Assessment, Design, & Ecology

Dylan Ahearn, PhD (*Principal Scientist*) – Hydrologist with 20 years experience designing studies, collecting data, and conducting detailed pollutant loading assessments for over 100 stormwater treatment technologies of all types.

Kate Forester (*Principal Landscape Architect*) – 18 years experience in GI/NbS design and maximizing ecological function, developing design and maintenance standards, and LID/GI training.

26-years advancing the health and sustainability the region's watersheds <u>Role</u>: Outreach, local expertise and guidance

Eileen Alduenda (*Executive Director*) – Over 20 years experience collaborating with public agencies and nonprofit organizations in research, project design and implementation, and community education and engagement.

Jason Casanova (Director of Planning) – Over 15 years experience overseeing large-scale habitat restoration, green infrastructure, and technical assistance programs.

Academic Partners & Consultants

Dr. Daniel Hirmas – Professor in the Department of Plant and Soil Science and the B.L. Allen Endowed Chair in Pedology, Texas Tech University

Dr. Hoori Ajami – Associate Professor of Groundwater Hydrology in the Department of Environmental Science, University of California - Riverside

Jenny Saltonstall, L.Hg – Hydrogeologist with 26 years of experience, including leading major long-term bioretention studies

CommonStudio – Creative firm that mixes art, science and engagement in urban landscapes; design consultant for final recommendations portion of bioretention study

Problem Statement

Lack of published data on bioretention health/performance in Rio Hondo watershed and region

Assessment of system success/failure generally lacking and/or uncatalogued

Design frameworks lack regional customization Current design standards have low tolerances for long-term ecological development

Study Objectives & Goals

Conduct comprehensive field testing, surveying, and laboratory analyses...

...to catalog bioretention system performance in Rio Hondo & San **Gabriel watersheds**

Develop s
models th
function

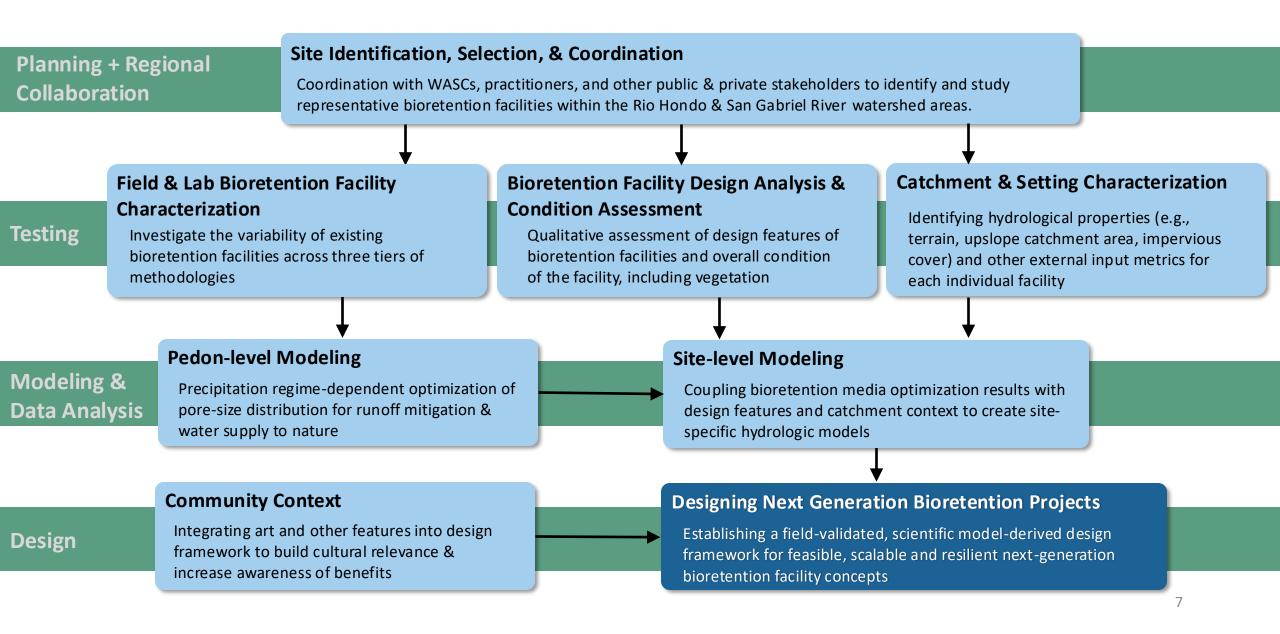
site-level hydrological at incorporate ecological

	_
-	

Establish a design framework validated by above findings...

Explore strategies towards approaching bioretention systems as a community asset...

...to better understand needed design parameters for future climate conditions


...to develop next-generation bioretention designs & retrofits that exceed performance benchmarks

...to build stewardship programs that assist with maintaining long term resilience, saving millions

Promising systems installed by The River Project (Water LA Report 2018)

Cost & Schedule

Phase	Description	Cost	Completion Date
 Planning + Regional Collaboration 	Outreach, engagement, and site selection	\$41k	February 2026
2) 3-Tier Testing	Assessment of existing bioretention systems	\$105k	July 2026
 Modeling & Data Analysis 	Hydrologic modeling of existing and future conceptual models of bioretention systems	\$140k	February 2027
4) Next-Gen Design	Designs and concepts with ecological soundness and cultural relevance for the next generation of bioretention systems	\$180k	December 2027
TOTAL		\$466k	December 2027

WASC	Year 1	Year 2	Total
LSGR	\$227,807	\$238,441	\$466,248
RH	\$227,807	\$238,441	\$466,248
USGR	\$227,807	\$238,441	\$466,248
TOTAL	\$683,421	\$715,323	\$1,398,744

Increase water storage & supply

- Find modifications that protect and enhance the capacity to infiltrate and store plant available water in the soil profile
- Successful bioretention systems can manage an impervious area 20x their footprint.

Improve water quality

- Greater infiltration and storage of stormwater prevents polluted runoff reaching downstream aquatic systems.
- Optimized bioretention soil media can be specially formulated to target and transform pollutants into ecological resources

Enhance community investments

- Aesthetics & Air Quality: Dense vegetation improves air quality by capturing particulate matter while increasing aesthetic appeal
- Urban Heat Island & Energy Efficiency: Bioretention systems, due to their higher levels of plantavailable water reduce heat islands through evapotranspiration
- **Biodiversity Corridors:** Bioretention systems provide places of refuge for pollinators and birds

Questions?

Dustin Herrmann (TreePeople)

Craig Doberstein (Herrera)

> Igor Bronz (TreePeople)